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Abstract A qualitative model of turbulent diffusion introduced by Zimmerman & Chatwin (1995,
Environmetrics, 8, 665-673), henceforth referred to as ZC, is considered. In this model the diffusion
equation is solved in a one-dimensional finite region, with zero concentration gradient imposed at
the ends of the region. This is equivalent {0 an unbounded periodic problem. Bandomness is intro-
duced into the model (Lo simulate the effect of random turbulent advection) by taking the sampling
position to be random. ZC took as initial condition a symmetrically positioned rectangular “pulse”.
The results gave a a bimodal probability density function (pdf}, with peaks at the minimum and
maximum concentrations, and also gave a collapse of the concentration kurtosis against the concen-
tration skewness for narrow initial pulses. Asymptotic analysis shows that the former result must
heold at large time for any symmetric initial condition. We examine a generalisation of the ZC modet
to asymmetric initial conditions. These cases can be transformed to problems with symmetric initial
conditions, so the large time pdf must be bimodal. For narrow rectangular pulse initial conditions
the leurtosis-skewness collapse is alse obtained. In nearly all of these cases the large time behaviour is
of the same form as for a symmetrically positioned pulse of the same width, but with a time scale 4
times greater. It is suggested that to obtain results relevant o turbulent diffusion the most significant
improvement can be made by incorporating a more realistic velocity field inte the model. However,
it is also proposed that more representative results might be obtained by averaging the results for
the asymmetrically positioned pulse over a suitable ensemble of pulse displacements from the central
position.

The focus im this paper s on a particular
qualitative model of turbulent diffusion which

1. INTRODUCTION

Turbulent diffusion is a process of considerable
interest in both environmental (e.g. dispersion
of pollutants in the atmosphere) and engineer-
ing (e.g. in combustion processes) contexts. In
the relatively simple case of diffusion of a con-
served (l.e. non-reacting) scalar T'(x,t) (to be
referred to as the concentration), the governing
equations are
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where u{x,t) iz the turbulent velocity and &
is the molecular diffusivity, together with the
Navier-Stokes and continuity eguations for u.
The randomuness of u and, hence, of T, together
with the nonlinearity of the equaiions, means
that a closed set of eguaticns cannot be ob-
{ained even for the mean velocity and mean
concentration, For this reason modelling of tur-
bulent diffusion usually proceeds by approxim-
ating the equations so that a closed set is ob-
tained. In all such models accurate represent-
ation of all relevant physical processes is sacul-
ficed in order to be able to obtain a solution.

was first presented by Zimmerman & Chatwin
[1995b] (henceforth referred to as ZC), and was
developed further in Chatwin & Zimmerman
11698] and Zimmerman {1996]. In the first ver-
sion of this model the only physical processes in-
cluded were molecular diffusion and random ad-
vection {effectively on large scales, with no spa-
tial variation), and only 1 space dimension was
retained. This model was able to reproduce cer-
tain observed features, for example the collapse
onto an approximately quadratic curve of the
graph of kurtosis against skewness (first noted
by Mole & Clarke [1985], and subsequently by,
for example, Zimmerman & Chatwin [1995a],
Lewis & Chatwin [1995], Heagy & Sullivan
[1996], Li & Bilger [1996] and Chatwin & Robin-
son [1967]).

In the original ZC model (1) is replaced by
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and is solved on the 1D domain —I < = < I,
together with the boundary condition
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and a prescribed initial condition T'(z,0). (3}
implies that the solution will be equivalent to a
periodic solution in —oo < 2 < oo with period
2I, Randomness is introduced into the model by
assuming that the measurement position is ran-
dom, with a uniform distribution on [,{]. This
is equivalent to fixing the measurement position
and allowing randoem (but rigid} movement of
the diffusing scalar.

Introducing non-dimensional variables
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where Ty is a representative scale for I'(w,0),
gives
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CX,0)=g(X) -1<X<1, {6)

for some funciion g. Concentration moments
are then given by

i
jp=B(C} = %LG(X, T)dx

which is a constant, and
pn(T) = E{(C ~ p)"}

- éj{l (C(X,T) ~ p)"dXx.  (7)

{(Here E{-} denotes the mean, or expected
value.) The variance o2, skewness § and kuzr-
tosis A are defined by
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2. SYMMETRIC INITIAL CONDI-
TION

Suppose the initial condition ¢(X)} is symmetric
about X = 0. Then the solution to {4)~(8) can
be written as

el
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n=1

where

1
Ap = 2/ g{X)cos(nrX)dX.
0

1t then follows from (7) and (8) that
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By retaining only the terms up to n = 2 in (9)

the large time asymptotic solution of ZC can be
obtained:
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ZC calculated numerical solutions from the ini-
tial condition

mX)={1 <7 gy

0 otherwise,

where 0 <« < 1. In this case g = + and

2 .
An = — gin{nmy). {18)



The numerical results for various values of
were in agreement with the asympiotic res-
ults (13)-(16), and also with some small time
asymptotic results derived in ZC.

The numerical results of ZC showed that the
probability density function (pdf) of concentra-
tion was bimodal, with peaks at the minimum
and maximum concentrations, and that at large
time these concentration bounds converged to-
wards the mean concentration p. Chatwin &
Zunmermar: [1998] derived this result analytic-
ally for small and large time. In fact, this large
time behaviour is inevitable in this model for
any symmetric g{.X), since eventually ¢ — u will
be dominated by the leading term for which 4,
does not vanish, 4, say. Peaks occur in the pdf
at the values of ' for which C/8X = 0, L.e. at

C=vx Ame"maﬂzT.

3. ASYMMETRIC INITIAL CONDI-
TION

3.1 Analytical Results

For any initial condition g(X} the equivalent
periodic problem implied by the boundary con-
dition (5} can be transformed into a problem
with symmetric initial condition by defining

1
X=3(X-1, T={T (19

[N

(4} and (5) then apply with 7' and X replaced
by 1" and X', and with initial condition

1+2X%/ 1< X' <0
CX'0) = gl ) <X <
g{1—2X") 0<X <1,
(20)

Thus the solution (§), and the moments {10)-
(12), also apply, with T and X replaced by
7" and X', and A, calculated from C(X’,0)
rather than from g(X}. The implication is that,
provided A; # 0 and 4o # 8, the asymptotic
form of the moments {as given by (13)-(16))
and of the pdf is the same for symmetric and
asymmetric initial conditions, but that the time
scale is 4 times greater in the asymmetric case,
{Of course the moments will also differ because
of the different values of 4; and 4g.)
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2.2 MNumerical Resulis

We calculated numerical solutions of (4)~(6) (by
a finite difference scheme, rather than by trun-
cating (9}), using asymmetric initial conditions
analogous to those of ZC, i.e,

1 X - Xgl <
S S et
0 otherwise.

Here we consider only v < 1/2, since in turbu-
lent diffusion, except very close to the source,
we expect small values of v to be relevant.
Without loss of generality 0 < Xp < 1~ +.
Xg = 0 gives the ZC initial conditions. Under
{19) the Xy = 1 — v case transforms exactly to
the Z(C case, and so has exactly the same solo-
tion, but with a time scale 4 times greater. For
0 < Xg < 1—~+, from the previous subsection,
we expect, provided that 4y # 0 and 4y # 0,
that at large time the moments will be approx-
imately the same as those for Xy = 1 — v (with
the precise differences depending on the values
of the 4,,). The equivalent periodic problem has
initial rectangular “pulses” with two separation
distances 2(1 + Xy). At large time the pulses
separated by 2(1—Xy) effectively merge and the
result is close to that obtained from one sym-
metrically positioned initial pulse of fwice the
width, which is equivalent to the Xg = 1 —~
case.  The larger Xy, and thus the smaller
2{1 — Xp), the earlier we expect the pulses to
merge, and so the earlier we would expect there
to be a transition from behaving like the Xy = 0
case to behaving like the Xg = 1 — v case. The
exception to this behaviour, as described below,
is X = 1/2, for which 4y = 0. For X close to
1/2, 45 will be very small, so that although the
ultimate asymptotic form will be different from
that of Xo = 1/2, it will take a long time for
that asymptotic form to be reached.

At small times, before diffusion has carried a
significant amount of scalar to the bouadary
X = 1, we expect the momenis to he approx-
imately the same as for Xy = 0. Thus we ex-
pect the small time appreximation of ZC will
be valid, but that it will break down at earlier
times for larger Xp. This is confirmed by the
numerical solutions.

Calculating A, using (20) and (21) gives

4 1
A, = —sin (Enw'y\> cos {:j‘}:nﬂ'(l - Xg)}

T 2

for Xy # 0. Thus {(13)-(16} apply, except in the



case Xo = 1/2 when 4y = 0 and {10)-{12) lead
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So for Xy = 1/2 the large time asymptotic be-
haviour is different from that in the symmetric
case. The skewness decays more guickly than in
the symmetric case Xg = 0, while the kurtosis
decays more slowly than in the symmetric case.
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Figure 1: Skewness S against time T for
~ = 33/1024.

The dependence of the results on v is similar to
that found in ZC, so here we concentrate on the
effect of varying Xo. Figure 1 shows the time
variation of § for v = 33/1024 and for various
values of Xy. As expected, at small times the
skewness is independent of X, For large Xy the
behaviour is as described above, with a trans-
ition from X = 0 to Xg = 1—+ behaviour, with
an earlier transition for larger Xy. For Xy = 0.5
the skewness decays faster than for Xy = 0, as
expected, while for Xp = 0.1,0.3 the skewness
is similar to that for Xy = 0.5. In the latter
cases we expect that eventually there will be a
transition to Xog = 1 — v behaviour.

As shown in Figure 2, similar behaviour is ob-
served for the kurtosis, but with some additional

ku~tasie

(PRSP

PRESERIEN
- Xa=0.

Figure 2: RKurtosis & agalnst time T for
v = 33/1024.

variation in the behaviour as the asymptotic
limit of 1.5 is approached, with the kurtosis dip-
ping below 1.5 in some cases. (15) shows that
the ultimate approach to 1.5 is from above, ex-
cept for Xy = 0.5 when the approach is from
below.
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Figure 3: Kurtosis against skewness for vy =
33/1024. The small time (solid line) and large
time (dashed line, equation {16)) asymptotic
approximations are also shown.

Figure 3 shows the kurtosis plotted againsi the
skewness for v = 33/1024 and various values
of Xg. The collapse onto something close to a
single curve is striling. The greatest scatter in
the results appears to be at large time when S
and K are small,

Figures 4-7 show the pdf (estimated from a his-
togram derived from the numerical solution for
C(X, T at the X gridpoints) at four times, for
v = 33/1024 and Xg = 0.5. At T = (.01 the
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Figure 4: PAf for v = 33/1024 and Xy == 0.5 at
T = §.01.

b

pdf is bimodal as for the symmetric case of ZC
(although the peak at the maximum concentra-
tion is mot very well resolved). Once a signi-
ficant amount of material has diffused to the
boundary at X = 1 the concentration starts
building up there, so that a third peak in the
pdf emerges at the minimum concentration and
moves progressively to larger concentrations un-
il it merges with the upper peak, and the
asymptotic bimodal development sets in.
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Figure 5: Pdf for v = 33/1024 and Xp = 0.5 at
T = 0.05.

4. DISCUSSION

As a model of turbulent diffusion, the model of
ZC is unrealistic in several ways, including the
following: the model has only one space dimen-
gion; in effect spatial variation of the advect-
ing velocity is ignored; and the concentration
structure does not reflect the complexity of that
in turbulent diffusion. The periodicity in the

model forces the large time pdf to be bimedal,
with peaks at the smallest and largest concen-
trations, regardless of the initial concentration
structure. While Chatwin & Zimmerman [1998]
argued that there is no a priori reason to re-
ject such bimodal pdfs, it seems unsatisfactory
that the bimodality at later times in the ZC
model follows directly from the artificial peri-
odic structure of the model.
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Figure §: Pdf for v = 33/1024 and Xy = 0.5 at
T = 0.088.

Similar results hold even if the number of space
dimensions is increased and, as discussed in
§3.1, for more complex concentration struc-
tures. At intermediate times the results of §3.2
showed that an incresse in complexity of the
structure can lead to more than two peaks in
the pdf, a feature for which there is no evidence
in turbulent diffusion from sources of uniform
concentration. Zimmermar [1996] considered
an extension of the model to 3 space dimen-
slons with advection by a spatially varying ve-
locity field which has chaotic streamlines. The
numerical results gave a large time unimodal
pdf, but still gave a K ~ S collapse. So the
extension to the ZC model which seems most
likely to produce results relevant to turbulent
diffusion is to infroduce a more realistic velo-
city field. The model may in any case be more
usefud as a limiting test case for more realistic
models of turbulent diffusion.

The K — 5 collapse seems to be a robust fea-
ture. It ococurs in the original ZC model where
the pdf is bimodal, in our asymmetric modifica-
tion (see Figure 3}, where the pdf can have more
than 2 peaks, and in the model of Zimmerman
[1996], where the pdf soon becomes unimodal.
The existence of the collapse over such a range
of pdfs raises the guestion of how much the col-
lapse actually tells us about the pdf, other than
that the pdf can probably be represented quite

-237-



e
510.0

382.5 4
v=33/1024
- Ts0.8

255.0 4 )

127.5 4 &

Z.8338 3,0900 3.3862 3.7625
Plo

[

Figure 7: Pdf for v = 33/1024 and X = 0.5 at

well by 3 parameters.

As noted by Chatwin & Zimmerman [1998],
similar bimodal pdfs to those of the ZC model
were derived by Kowe & Chatwin [1985] for a
cloud of scalar diffusing in a simple random ve-
focity field. In that case the bimodal pdfs were
also used in simulating pdfs for more realistic
velocity fields, in some cases leading to a un-
imodal pdf. A similar use could be made of
the results from the model of §3.2, recognising
that in turbulent diffusion there are “strands” of
scalar with a range of random separations. Thus
the pdf pa(8; T, Xy, ) produced by the model
of §3.2 could be averaged over X, using an as-
sumed probability distribution f(x} for Xy, to
give an overall pdf p{#; T, v}. Thus

-y
p(0;T,v) =f0 FO)pal; T, x,v)dx.
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